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Introduction
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Overview

@ JPSS-1 CrlIS thermal vacuum (TVAC) spectral testing

@ SNPP CrlS in-orbit spectral calibration performance

@ SNPP CrlS Stability: three-year trends in CrlS radiances
@ Mid-Wave Non-linearity in High Resolution Mode
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JPSS-1 CrlS Spectral Calibration in TVAC

@ Spectral calibration has two components:

e Absolute spectral calibration, provided by Neon lamp,
which is calibrated in TVAC.

e Apodization smearing of ILS due to off-axis detectors.
Need accurate effective detector positions to correct, as
determined in TVAC.

@ Both Neon and focal plane geometry derived from
analysis of gas cell spectra.

@ 1 ppm accuracy requires modeling to ~0.001 in
transmittance!

1 ppm accuracy keeps NWP bias correction standard
deviation small enough (if using multiple FOVs).
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LW CO;, Spectra (MN, Side 1)
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Observations

@ Avoid CO; Q-branch region, spectroscopy limitation (in RTA too!).
LBLRTM (AER) and kCARTA (UMBC) give similar results.

@ Slight baseline shift near 687 cm~'?
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CH4 Spectra

Full Spectrum (H,O contamination)
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Observations

@ Avoid water vapor contamination

@ Small amount of Q-branch line-mixing evident near 1300 cm~! (can

be ignored in fit).
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CO Spectra
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Observations

@ Minor baseline oscillation, should average out.

@ Spectroscopy better here than in long-wave or short-wave
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Test Summary
A Neon (from FM-1) = 2.8 + 0.2 ppm or 703.45036

Test ID T Side Neon P_log P_fit fitlog Lien
(ppm) (torr) (torr) (torr)

11-20_C02 PQL 1 -1.8 41 22 -19 Bad P

11-25_C02 PQL 2 0.5 40 27 -13 Bad P, 775 cm-1?, Fringes
10-16_CO2 MN 1 3.1 40 40 0

10-18_C02 MN 2 3.9 40 40 0 Fringes

11-09_C0O2s1 PQH 1 4.6 40 40 0 NH3, Fringes
11-09_C02s2 PQH 2 2.6 41 37 -4 NH3, Fringes

11-20_.NH3  PQL
11-19_NH3  PQL
10-16_NH3  MN
10-27_.NH3  MN
10-18_.NH3 ~ MN
11-09_NH3  PQH
09-27_NH3  PQH

6.0 20 18 -1 FOV9 way off

Bad P
11.9 40 6 -34 Bad P
12.6 20 34 14 BadP
10.8 39 7 -32 BadP

N =N — = N —
N
N
N
o
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11-20_CH4 PQL 1 2.1 41 30 12 BadP
10-16_CH4 MN 1 2.8 40 40 0
10-18_CH4 MN 2 2.6 42 42 -0
11-05_CH4 PQH 1 2.8 41 41 0
11-19_CO PQL 1 2.6 45 45 0
10-15_CO MN 1 BA 42 42 0
10-18_CO MN 2 2.6 41 41 0
10-02_CO PQH 1 3.1 40 26 14 Bad P
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PPM Errors (ShortWave Example)

Uncorrected v Offsets x,y offset Correction
520 370 520 17 -12 -17
370 0 370 -12 0 -12
520 370 520 17 -12 -17

Error after x,y Adjustment (SW)

Error after 6¥ Adjustment (SW)

0.2 0.3 -0.9
0.0 0 1.2
-0.2 0.1 -0.3

Only 3 numbers needed to nearly reach 1 ppm!

For all three focal planes max error = 2.8 ppm, only 6 detectors needed
adjustments to keep errors below 1 ppm.

All detector placements relative to interferometer axis driven to zero in
Engineering Packet data.
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JPSS-1 TVAC Conclusions: Spectral

@ Focal plane detector positions determined to 1 ppm

@ Neon calibration determined to 1 ppm, only 2.8 ppm
difference from SNPP (probably alignment)

@ Excellent fits to gas cell data

Recommendations

@ Delete NH3 tests: not successful and not
needed!

@ Substitute with longwave test with gas cell
filled with CO; broadened by air. These are
fabulously accurate spectra, this will help
NWP assimiation via an improved RTA in
region not easy to bias correct.
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SNPP In-Orbit Spectral Calibration

@ Concentrate on stability
@ Post-launch modifications:
e Focal plane x,y offsets adjusted
o Slight change to radius (gravity release of telescope)
e Neon unchanged
@ Neon lamp drifts (emission geometry) main possible
source of spectral calibration drifts.

Approach

@ Neon calibration determined from clear tropical up-welling spectra
vs simulations using cross-correlation.

@ CrlIS SDR produced by IDPS only tracks Neon to 2 ppm.

@ Consequently, cannot use IDPS SDRs to track Neon calibration.

@ This Work: re-processes full mission SDRs with UW/UMBC CCAST
SDR testbed, follow the Neon at all times.

@ CCAST algorithm used is one of two approaches under consideration
for JPSS-1.
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Metrology Laser Shifts a/c to Neon Lamp

CrlS Met-Laser PPM Shifts |
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This is possibly to due with the thermal control of the
metrology laser being impacted by the external IR radiation
environment.
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Fourier Analysis of Neon Time Series

FFT Neon PPM

Frequency (per day)

Hash on previous slide is the 1-day cycle seen here. Albedo
effect on metrology laser wavelength?
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Neon Drifts from Upwelling Radiances
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This is a once/day measurement from clear tropical ocean scenes.
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Neon Drifts from Upwelling Radiances
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This is a once/day measurement from clear tropical ocean scenes.
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Conclusions: SNPP CrIS Neon Stability

@ Most of variability in the metrology laser wavelength is
real.

@ There may be a slight drift in the Neon wavelength.

@ A linear fit to the derived Neon wavelength gives -0.13
+0.12 ppm/year. Possibly a 0.5 ppm change since early
2012.

@ For NWP assimilation, these drifts may be removed with
dynamic bias correction.

@ They are identical for all 9 FOVs.
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Neon Calibration using High-Res CrIS Radiances
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Neon Calibration using High-Res CrIS Radiances
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Neon Calibration using High-Res CrIS Radiances
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2.5 ppm shift in FOV-5 at end of December??
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Estimation of CrlS In-Orbit Stability: Approach

Start with CCAST processed SDRs (stable algorithm)
CCAST converts to normal-resolution post Dec. 2015
Subset for clear, ocean tropical scenes (uniformity filter)

Match each scene of ERA Interim re-analysis and
compute simulated radiance

Create daily average of observed and simulated
radiances (365 x 3) long time series.

Fit time series bias (Obs-Simulated) for linear rate (and
seasonal terms).

Perform an Optimal Estimation retrieval on bias time
series (d(bias)/dt) spectrum to determine geophysical
time derivatives. (O3 is only column offset.)
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CrIS Linear B(T) Bias Rate over Three Years
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2-0 Uncertainty in CrlIS Linear B(T) Bias Rate
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OE Fit Results

Units are all per year

CO2 (ppm) 2.35 +- 0.008 Full rate
03 (%) -1.22 +- 0.006 Relative to ERA
N20O (ppb) 0.82 +- 0.014 Full rate
CH4 (ppb) 7.79 +- 0.182 Full rate
CFC11 (ppt) 0.10 +- 0.016 Full rate
SST (K) 0.016 +- 0.000 Relative to ERA
@ NOAA/ESRL Global Mean CO; @ ERA SST is a measurement:
Rate for 2012-2014: 2.25 GHRSST
ppm/year @ CrlS - ERA = 0.016K/year

@ CrlIS - ESRL = 0.1 ppm/year
implies CrlS stability of
0.005K/year.

v

NOAA/ESRL CH,4 from 2012-2015 varies from 5-10 ppb/year
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CO; Contribution to Spectral Bias

T T T T T T

——Obs
—C02|-

dB(T)/dt in K/year

f

800 1000 1200 1400 1600 1800 2000 2200 2400
Wavenumber (cm'1)

Issue in stratospheric sounding channels, we should differ from ERA by
0.04K/year! Could ERA not be able to bias correct for CO; in the upper
strat?
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OE Profile Differences from ERA

Profile Differences from ERA
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For these altitude it is difficult to find a standard for temperature bias
correction? Or is the CO; rate not constant with altitude?



SNPP Stability
000000800

Fit Residuals

Requirements for Inter-Instrument Agreement
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How well can we fit CrIS radiance time derivatives?
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How well can we fit CrIS radiance time derivatives?
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Globally Averaged Changes in CrlS B(T)

dBT/dt Night with 95% Uncertainty

dBT/dt Day with 95% Uncertainty
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CO; forcing well defined (low uncertainty). Cloud and surface
temperature response highly variable, need longer time span to lower

uncertainty.
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CrlIS Global A B(T)

Versus ERA-Clear and Binned by Day/Night/Land/Ocean

Day + Night dBT/dt: Obs, ERA-Clear dBT/dt: Day/Night/Land/Ocean
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ERA global (day + night) clear sky linear rate very close to CrlS
observations (except for minor gas forcings).

Day, Land rates very different from others. Day ocean suggests
increasing clouds.
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Mid-Wave Non-Linearity in High-Resolution Mode
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Tropical clear bias vs ECMWF, Hamming apodized high-spectral
resolution radiances from CCAST.
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Mid-Wave Non-Linearity in High-Resolution Mode
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Same as prevous slide, but now subtracting all biases from FOV-5 bias.
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